ISSN:0975-9646

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

Securing Cloud-Native Containerized Applications:
Orchestration, Supply Chain, and Runtime Protection
Vishakha Sadhwani*!

*Department of Computer Engineering, University of Maryland
College Park, MD 20742, United States

Abstract—Over the past few years, cybersecurity
professionals have publicly recognized that container
technology has been increasingly popular and used by
numerous enterprises. Cloud native environments have
gained significant momentum in enabling the creation and
deployment of applications across many locations, resulting
in enhanced flexibility and a simplified development lifecycle.
Containers present distinct cybersecurity concerns that
involve several components such as images, containers, hosts,
runtimes, registries, and orchestration systems. This
emphasizes the imperative necessity to allocate resources
towards ensuring the security of the container stack. The
research, published by Aqua Security on June 21st, highlights
various methods via which attackers might compromise a
company's container infrastructure and the image supply
chain. In addition, they projected a 600% increase in the next
few years if proper measures are not taken. This article
examines the security factors involved in container
orchestration and the software supply chain landscape. In
order to address these problems, it is crucial to implement
standardized security and configuration controls. This study
introduces three broad scenarios that tackle prevalent
security vulnerabilities in container management, along with
the corresponding solutions that are currently accessible. The
use cases encompass: (I) Ensuring the security of application
containers by preventing misconfigurations in the
orchestrator (II) Protecting application containers from
potential threats posed by insecure registries (III)
Implementing a shielding cloud platform to protect against
hacked containers

Keywords— Cybersecurity, Containers, Orchestrations,
Kubernetes, Infrastructure, Software Supply chain

I. INTRODUCTION

Cloud providers offer a purpose-built infrastructure for
containerized application deployments, ensuring managed
availability, scalability, resiliency, and a secure base for
your software. It provides an abstract layer that facilitates
deployment, scaling, expanding interconnections, and
continuously monitoring this infrastructure, thereby
streamlining operations and ensuring quality within the
cloud environment.

However, the diverse composition of cloud infrastructure
makes it susceptible to attack if even one component is
compromised [1]. This is a key concern for container-based
cloud deployments, where vulnerabilities can surface in
various compromised resources: software packages,
container images, orchestrator misconfigurations, and
many more. These compromises might stem from
malicious actors, bad dependencies, bypassed code
reviews, or compromised systems within the deployment
pipeline. As cloud infrastructure scales, the challenge of
protecting it from such attacks grows exponentially [2].
Therefore, it is imperative to include additional security

measures during cloud container orchestration and

provisioning, alongside continuous reviews of processes

and configurations. Further supplementing it with auditing
systems to maintain a strong security posture for your
application.

To effectively implement security measures, it's essential

to understand the various elements and processes involved

in building and deploying containerized applications.

These elements include images, container runtimes, cluster

networks, and access to data deployed in workloads across

multiple clouds. As applications scale, the complexity of
managing, securing, and debugging them increases due to
the multitude of component workflows.

The nextsection presents the main components connected

with distant settings and services, organized into

categories:

1. Protected source code: Safeguard code across local
storage, development environments, and version
control management systems [1].

2. Protected system for constructing and evaluating
infrastructure: Evaluate container orchestration
platforms such as Kubernetes[3] for misconfigurations
and applying appropriate authentication, authorization
methods and safety controls.

3. Vulnerability scanning: Involves conducting scans on
container images and runtimes to identify any potential
weaknesses or vulnerabilities before they are deployed
for production. Develop and deploy systems for
verifying the authenticity and integrity of images.

4. Container access and microservice communication:
Oversee and safeguard the access to containers and
ensure secure communication between microservices.

5. Ensuring compliance across multi cloud platforms:
Enforce compliance and standards with company
policies by implementing restricted namespace access
and strong authentication/authorization for applications
[3].

6. Logging and monitoring: Implement practices to
consistently record and track applications [10], thus
mitigating the risk of unauthorized and harmful
utilization of resources.

These are just some high-level categories that are involved
in an application delivery lifecycle. While numerous
studies have been undertaken on host and container level
security, there is a lack of emphasis on container
management and supply chain security [2]. This study
explores three common use cases at the platform level,
aiming to enhance users' comprehension of security issues
related to container management platforms. Additionally,
it provides an overview of the available strategies for
securing application containers.

14

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

I1. BACKGROUND
A. Challenges in Container Security
Presently, the security concerns pertaining to containers
and their orchestration are of great significance. Failure to
integrate security as a fundamental component of the
application lifecycle not only puts corporations at risk, but
also jeopardizes the businesses of their customers.
Organizations encounter significant challenges in
guaranteeing the security and coordination of containers
[2]. Failure to adequately address security across the whole
application development process exposes both
organizations and their consumers to possible
vulnerabilities. In addition, developers often perceive
security measures as impeding innovation and speed at
which products are brought to the market [6]. This
emphasizes the necessity of implementing a cohesive
strategy that integrates security strategies with the
capability to promptly adjust and adapt. An effective
solution could involve implementing a continuous security
paradigm that prioritizes "Shift Left Security'[10]. This
addresses the question of what needs to be done, but the
question of how remains: how can these strategies be
integrated into your application development process?
Although the cloud promotes shared accountability and
helps to tackle certain security concerns, there are still
instances where both the application and the cloud platform
it operates on can be vulnerable to significant attacks.
This research paper focuses on tackling a specific issue and
proposes a conceptual framework that revolves around the
essential elements of deploying containerized apps in the
Cloud. Furthermore, it highlights the potential hazards that
can occur in the absence of adequate precautions and
explores the ways in which orchestration, supply chain, and
cloud security tactics can be utilized to mitigate these risks.
Consequently, it is necessary to analyze the challenge and
divide it into the subsequent separate instances of usage:

(I) Ensuring the security of application containers by
preventing misconfigurations in the orchestrator

(II) Protecting application containers from potential
threats posed by insecure registries

(IIT) Implementing a shielding cloud platform to
protect against hacked containers

B. Literature Review

This study employs a wide variety of sources, including
well-regarded academic journals, industry magazines, and
dissertations collected from online archives. This wide-
ranging collection illustrates the need for a thorough
understanding of the challenges in securing Cloud
containers and practical guidance for implementing
solutions. By analyzing several internet platforms, we
gained significant insights into the newest market trends
and unique business concerns. Furthermore, we effectively
discovered recurring issues and available remedies within
this domain. The selection criteria we employed focused
on multiple facets of container deployment security in
cloud environments, encompassing characteristics,
remedies, risks, weaknesses, exploits, accessible utilities,
pertinent standards, established assessment methodologies,

potential applications of container technology, and
alternative containerization approaches[2]. Employed
Google Scholar to do searches utilizing keywords such as
"application container security," "cloud platform security,"
and "container orchestration." Following the initial search,
we excluded generic resources that were not directly
applicable to container security. In the end, we utilized a
retrospective citation search strategy to expand the scope
of our literature analysis by examining the references cited
in the selected works.

III. THREAT MODELS

A. Attack Scenarios and Proposed Solutions

Although there are many instances that illustrate the
security of containerized applications, attempting to
compile a comprehensive list would be impractical and
burdensome for readers. Hence, we suggest a novel
classification of utilization scenarios, with a primary
emphasis on registries and orchestration[3][4]. The
objective of this research is to provide a comprehensive
understanding of the potential hazards, weaknesses, and
supply chain considerations linked to application
containers and orchestration systems like Kubernetes.

1. Use Case 1 : Protecting application containers from
orchestrator misconfigurations

Kubernetes has emerged as the prevailing method for
managing and coordinating containers, especially in cloud-
based settings[6]. Due to its robust power and capacity to
handle large workloads, it is a crucial tool for
contemporary cloud-based applications in diverse sectors.
Unresolved Kubernetes security misconfigurations can
present substantial hazards to your cloud infrastructure and
applications[7]. It is essential to analyze and comprehend
the typical weaknesses in Kubernetes manifests
(configuration files) in order to ensure the security of
containerized workloads in the cloud.

According to an empirical study that examined 2,039
Kubernetes manifests from 92 open-source repositories[6],
common misconfigurations include the lack of resource
restrictions, the absence of securityContext settings, and
other similar issues[7]. These vulnerabilities can result in
container breaches, illegal entry to cloud resources, data
extraction, and a compromised cloud environment. To
prevent these attacks, it is crucial to do security-focused
code reviews and utilize static analysis tools[8] on
Kubernetes manifests.

Container
Orchestration

K—/ Set Configurations
{ \

v .
Container Node Container Node Container Node

Containerized Containerized Containerized Containerized Containerized Containerized

application application application application application application
-] [+-]

Containerized | | Containerized Containerized Containerized “’""""‘*""“ C“”‘a“"ﬂ”led

application application \ applcation appiiation appiication application J

Figure 1. High Level Overview of container stack with
the Orchestration Platform

15

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

Table 1 Scenarios of Attack for Use Case (I) - Protecting
application containers from orchestrator misconfigurations

Category

Possible
Attack

Scenario

Solution

Missing Resource

Resource

Without defined resource limits (CPU,

1. Enforce resource requests and

restrict unauthorized interactions with the registry. The
image below illustrates the locations where attacks can
occur, followed by a table that categorizes and presents
distinct attack scenarios.

Limits Exhaustion memory) containers can consume an limits
excessive amount of resources within 2. Leverage Kubernetes tools lik¢
anode. This can lead to a Limit Ranges and Resource Quot
denial-of-service situation, affecting to help enforce these policies at t e
the performance of other containers or namespace level | Packagess
crashing the node entirely. Adversaries 3. Leverage Open Policy ; Dependancies
could deliberately introduce such Agent(OPA) to define & enforce i
workloads to disrupt cluster fine grained policies across your ‘D Deploy to Container Cloud
operations. clusters during container creatior IS N N N s N O
— - — - - - OT:| A | souce | 2Bt lauigapackage Container }7 _< N
Missing Security ~ Privilege A container could run as root or have 1. Run containers with non-root [L Repository) L Artifacts) Registry J oA 4
Context Escalation escalated privileges within the host. users and drop unnecessary linux Developer JEN IF =
This grants access to attackers who capabilities 2
compromise the container, full control 2.Prevent malicious modification C
over the underlying node. container filesystem with setting
"readOnlyRootFilesystem" to "tr A Bypassed Code Review D : Using Bad Dependency & Packages
éa?::e:";lrs flél:e ﬁfc"e:“]aﬂ?:cgis B : Compromised Source Control System E: Bypassed CI/CD
during o taines ctoation. C: Compromised Build Platform F: Compromised Package Repository
hostIPC Host Potential manipulation of host-level 1. Avoid setting it true unless
Enabl G p and from within strictly necessary) .) . .
the container, severely undermining 2. Define policies with OPA that Flgure 2 . OveereW Of Securlty protectlon requlrelnents for
isolation. prevent the deployment of pods . L.
with hostlPC Enablement: e the supply chain components within the cloud
unless explicitly exempted. .
environment.
hostNetwork Lateral An attacker within the container could 1. Enforce isolation by utilizing
Enablement Movement and move laterally across the host kubernetes network policies to
Network network, access other systems, or define allowed network .
Compromise exfiltrate data. communication for pods Table 2 Scenarios of Attack for Use Case (II) -
2. Define policies with OPA that S f . l. . . .
prevent the deployment of pods afeguarding applications containers against
with hostNetwork: true unless O .
explicitly exompted. unsecured registries
Category Possible Scenario Solution
hostPID Information An attacker can view sensitive 1. Avoid setting it true unless Attack - —
Enablement Disclosure and processes running on the host and strictly necessary gzv";‘:jfd Code MZ“:“’“S :::‘“;;’Jf’c‘c“h:l';:::gig\l’:“’i‘::;(“ob;:“"f“” l'évi"l‘:‘p‘ﬁsxsc;‘;;‘zz‘;‘;’;w“h strict policies, and require senior
Evasion potentially mask malicious activities 2. Define policies with OPA that :‘fe,: :; " application source code 2. Implement static code analysis tools that flag potential security
or hide malicious processes. prevent the deployment of pods sensitive data issues and suspicious code patterns)
with hostPID Enablement: true nd 3. Use cloud specific build servers to start the build process only
e after successful code reviews. Monitor & maintain logs to audit
unless explicitly exempted credentials. activities.
Docker Socket Host Takeover An attacker can obtain complete Use the Container Runtime :O,I,{,:,Sl;n‘iccl::ud,: Z‘,ﬁ;‘ﬂ'ﬁ,ﬁ’,“’;ﬁ;gﬂ’f}:ﬁ i:‘nf;:z,fxn:sa:;zss
Mounting control over the Docker daemon on Interface (CRI) instead of directly and merge into protected branches.
the host, and could use this to spawn ~ mounting the Docker socket.
new containers, modify existing ones, Compromised Code An attacker can gain access to a 1. Enforce MFA for all access to source control repositories, and
or even delete them entirely, Source Control glteration, developer's source control credentials adhere to the principle of least privilege, granting users only the
potentially taking over the host. System. backdoor and modifies code to include a minimum necessary access.
. . . 5 insertion, or - vulnerability they can later expIoit. - 1.\ 1eient robust auditing and monitoring to detect suspicious
Hard-Coded Credential If an attacker gains access to the 1. Leverage cloud-provider specit theft of activity within repositories.
Secrets Theft and container or its configuration, they can secrets management tools along sensitive data 3.Monitor all activities related to the repository through cloud
Unauthorized steal sensitive information(passwords, ~with kubernetes secrets to store ai and logging & monitoring platform to catch any suspicious behavior.
Access API keys, or access tokens) and manage sensitive data securely. eredentials.
potentially gain unauthorized access to. 2. secrets ma ¢ Dx ies Potential ion of container 1. Regularly patch and update software on build platforms. Isolate
sensitive resources. into your CI/CD plp;lme topreve o b itorm and build {mage builds due to outdated software (e from ogher networks to reduce attack surface
accidental hard-coding of secrets process thatan attacker can exploit 2. Digitally sign container images using cloud solutions to confirm
3. Use a centralized Secret alterations their origin and integrity before deployment.
management and encryption tool 3. Monitor all activities related to the build platform through cloud
like Vault(Hashicorp) logging & monitoring platform to catch any suspicious behavior.
Insecure HTTP ~ Man-in-the-Mi An attacker who intercepts the HTTP 1. Encrypt data in transit, protecti ~ Using Bad Data Theft, Through malicious a Contim scan | cies for known bilities using
ddle Attack traffic can potentially read sensitive it from eavesdropping or tamperi Eelfndency & %anwmwm attacker can exfitrate sensiive data tools like Snyk, Trivy, container analysis etc. Establish a curated set
y . N e A ackages ttacks, and they can also deliver ransomware o Jibraries and dependencies and maintain a Software bill of
(MitM) information or even modify it in 2. Enforce network segmentation Lateral payloads. matrials(SBOM) to keep track of all the components in your
movement

transit (MitM attack). using kubernetes network policie:
3. Use service meshes(Istio,
Linkerd) to implement
observability, traffic control
between microservices with mTL

for encryption.

1I. Use Case 2 : Safeguarding applications containers
against unsecured registries

Unsecured registries present significant risks to
containerized applications as they have the potential to
store malicious images that contain backdoors, malware, or
obsolete images that are filled with vulnerabilities[1]. In
order to reduce these risks, it is advisable to give priority
to the utilization of reliable and protected registries, such
as cloud-native solutions (such as Google Artifact
Registry, Amazon ECR, Azure artifacts or any internal
repository) or well-managed private registries. Deploy a
system for ongoing vulnerability scanning to identify
potential vulnerabilities in pictures both prior to and
subsequent to their storage[10]. Utilize image signature
and verification techniques to guarantee the integrity and
source of the image. Implement stringent access controls
by utilizing IAM technologies and network limitations to

container images, making it casier to identify and manage risks.

Bypassed CI/CD

Untested/Vulne Without automated security checks,
rable images in the application team can skip the

Mandate that all deployments go through the defined CI/CD
pipeline with automated sccurity checks. Use strict access controls

production security holes and make it more to prevent unauthorized access. Enforce authorization tools to
vulnerable for attacks
prevent unauthorized or vulnerable images being deployed.
Maintain logs for all activities
Compromised ~ Repository ~ The malicious repository can become 1.Implement strict access controls and MFA for repositories and
Packaged Takeover, a centralized distribution point for always verify container image integrity using digital signatures
Repository Social infected container images before pulling and using them.
engineering

2. Consider using private repositories with additional security
measures for sensitive images

III. Use Case 3 : Shielding platform from compromised
containers

A container that has been compromised in cloud
environments presents a substantial risk, as it can be
utilized to gain unauthorized access to additional cloud
resources, sensitive data, or propagate horizontally inside
your network[9]. To protect your platform, prioritize
proactive containment by using runtime security
technologies that can identify abnormal container
behavior. Employ micro-segmentation to restrict network
traffic, so restricting the extent of an attacker's access, even
in the event of a container breach. Adopt a zero-trust
strategy in your cloud environment, where access is limited
to the minimum necessary based on the concept of least
privilege. Whenever feasible, adopt immutable
architecture to impede an attacker's capacity to establish a

16

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

lasting presence within a compromised container. The
following table elucidates the different attack situations

and proposes methods that can be taken to fortify your

platform.

Table 3 Scenarios of Attack for Use Case (III) - Shielding
platform from compromised containers

Possible
Attack

Category

Scenario

Solution

Container
Breakouts

Exploiting
Vulnerabilities
and initial
compromise

An attacker gains access to a container
through an unpatched vulnerability
within the application or by injecting
malicious code via a bad dependency.

1. Employ runtime security tools that monitor container behavior in real-ti

detecting anomalies, and enforcing security policies> Enforce network

segmentation to limit communication between containers & between contai
hosts.

2. Consider solutions like:Falco, Sysdig Secure, Cloud based agents that

detects suspicious container activity using system call analysis.

3. Run containers with minimal privileges & ensure proper filesystem

permissions, and use container optimized images to reduce the attack surfac

Cloud Resource
Abuse

Privilege
Escalation

The attacker leverages techniques to
elevate their privileges within the
container or attempts to break out into
the host.

1. Implement Least Privilege/ Hardening by running containers with the lea
possible privileges. Harden the host OS of cloud instances running containe
and consider running containers in rootless mode whenever possible.

2. Runtime Security: Use runtime protection tools to detect and block
anomalous container behavior (file access patterns, network connections, et
3. Enforce Network segmentation and implement Monitoring and Anomaly
Detection mechanism, consider cloud based or 3rd party solutions

Data Exfiltration ~ Exploiting
Cloud

Environment

The attacker targets cloud services,
APIS, or configurations with
weaknesses, aiming to access more
privileged resources o sensitive data.

1. Encrypt sensitive data at rest and in transit within the cloud environment
2. Firewalls and Network Segmentation to restrict outbound traffic and seg1
networks to prevent unauthorized data movement.

3. Implement intrusion Detection/Prevention mechanism to monitor networ
traffic and container behavior for signs of lateral movement attempts. Also,
incorporate DLP tools that detect, classify, and potentially block the transfe
sensitive data.

4. Cloud Security Posture Management (CSPM): Continuously monitor clo
configurations and assets, alerting and potentially fixing misconfigurations
could be exploited.

Lateral
Movements

Data Theft,
Ransomware
Attacks

The attacker compromises additional
workloads, explores cloud assets, and
potentially exfiltrated data

1. Zero-Trust: Tmplement a Zero-Trust approach in your cloud environment
constantly authenticate and authorize access to resources.

2. Kubernetes Network Policies or cloud-native firewalls help isolate workl
and reduce the potential for lateral spread.

3. Implement intrusion Detection/Prevention mechanism to monitor networ

traffic and container behavior for signs of lateral movement attempts.

IV. CONCLUSION
Cloud-native containerized apps have significant
advantages in terms of scalability, portability, and
improved security for software development [5]. This
makes them very suitable for massive language models in
the era of Generative Al. Kubernetes, specifically, offers a
resilient orchestration platform for hosting containers
securely. However, a significant obstacle to the broad use
of containers is the management of the various security
problems they entail. Currently, there's a lack of
comprehensive guides addressing orchestration platform
oversights, vulnerabilities, attack scenarios, and cloud-
agnostic solutions. This work aims to bridge this gap by
analyzing the primary threats arising from images,
registries, orchestration misconfigurations, and runtime
risks.
Therefore, I have presented three use cases encompassing
orchestrated containers and the software supply chain.
These use cases demonstrate how existing cloud solutions
can be strategically implemented to bolster containerized
application security. This research contributes to a more
secure and standardized approach to containerized
application deployment in cloud environments.
This work presented three critical use cases for container
security:) protecting against orchestrator
misconfigurations, (II) safeguarding against insecure
registries, and (II) shielding the platform from
compromised containers.
To address these use cases, a range of solutions can be
leveraged. These include policy enforcement tools (OPA,
Kyverno), security scanning (open-source solutions), and
cloud-focused solutions like trusted registries,
vulnerability scanning, image signing, runtime security,
micro-segmentation, immutable infrastructure, and zero-
trust principles. While these solutions offer significant
advantages, open challenges remain. Further research is

needed to focus on enhanced vulnerability management
and digital investigation capabilities within containerized
environments. By addressing these challenges, we can
further strengthen the security posture of container
technologies within the cloud, fostering their wider
adoption and facilitating innovation.
In this research paper, we have explored the critical domain
of container security within cloud-native environments.
Our exploration highlights the urgency of implementing
robust security measures to protect the integrity of
applications, the underlying orchestration layer, and the
overall platform against a landscape of potential threats and
vulnerabilities.
The analysis identified three core use cases:
(I) Protecting application containers from orchestrator
misconfigurations: Orchestrator misconfigurations can
leave containers vulnerable. This research emphasizes the
importance of enforcing strong configuration policies,
including the use of policy enforcement tools.
(II) Safeguarding application containers against
unsecured registries: Unsecured registries can be sources
of compromised or malicious container images. Rigorous
image scanning, registry authentication, and robust access
controls are essential. This includes vulnerability detection
tools, security scanning (including open-source solutions),
and cloud-focused CI/CD mechanisms like trusted
registries, vulnerability scanning, and image signing.

(IIT) Shielding the platform from compromised

containers: A compromised container can endanger the

entire platform. Strategies such as network isolation,
minimizing container privileges, and continuous runtime
monitoring are crucial to limit the potential impact.

The findings of this research highlight the multifaceted

nature of container security challenges. To achieve

comprehensive protection, a defense-in-depth approach is
vital [10], encompassing elements such as:

1. Robust image governance: Strict image provenance
tracking, vulnerability scanning, and secure image
registries.

2. Stringent configuration management: Enforcing
configuration best practices and employing tools for
policy validation and drift detection.

3. Runtime security mechanisms: Runtime monitoring,
behavior analysis, and network micro-segmentation to
prevent and contain malicious activity.

V. FUTURE RESEARCH DIRECTIONS
Further research avenues could investigate emerging areas
like:
1. Confidential Computing for Enhanced Container
Isolation
Several studies indicate that data exfiltration is a major
concern within container security. It would be valuable to
analyze tools that provide hardware-level encryption to
shield the contents of containers while in use. However,
encryption and decryption processes can introduce
performance overhead [11]. Further research is needed to
explore optimal solutions that balance security gains
against potential performance impacts.

17

Lamya AL-Khuzam/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 15 (2), 2024, 14-18

2. Integration of Machine Learning Techniques for More
Sophisticated Anomaly Detection

Incorporating machine learning (ML) algorithms can
enable proactive threat identification by detecting
deviations from normal behavior patterns within
containerized environments. This approach requires the
development of trained models using container-specific
attack data, as well as measures to reduce the attack surface
[12]. Additionally, research should address how ML
models can continuously adapt to evolving attack patterns
and the dynamic nature of cloud environments.

By addressing these use cases and recommendations,
researchers and practitioners can significantly advance the
state of container security, fostering a more secure and
resilient cloud-native landscape.

REFERENCES

[1] Bhowmik, S., Saira Bhanu, S. M., & Rajendran, B. (2020, February).
Container Based On-Premises Cloud Security Framework. 2020
International Conference on Inventive Computation Technologies
(ICICT). https://doi.org/10.1109/icict48043.2020.9112561

[2] Sultan, S., Ahmad, 1., & Dimitriou, T. (2019). Container Security:
Issues, Challenges, and the Road Ahead. IEEE Access, 7, 52976—
52996. https://doi.org/10.1109/access.2019.2911732

[3] Paladi, N., Michalas, A., & Dang, H. V. (2018). Towards Secure
Cloud Orchestration for Multi-Cloud Deployments. Proceedings of
the Sth Workshop on CrossCloud Infrastructures & Platforms -
CrossCloud’18. https://doi.org/10.1145/3195870.3195874

[4] Sadhwani, V. (2022). Cloud Container Security Next Move. Digital
Commons at Harrisburg University.
https://digitalcommons.harrisburgu.edu/csms_dandt/3/

[5] Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2019, July 1). Cloud
Container Technologies: A State-of-the-Art Review. I[EEE

Transactions on Cloud Computing, 677-692.
https://doi.org/10.1109/tcc.2017.2702586

[6] Rahman, A., Shamim, S. L., Bose, D. B., & Pandita, R. (2023, May
26). Security Misconfigurations in Open Source Kubernetes
Manifests: An Empirical Study. ACM Transactions on Software
Engineering and Methodology, 32(4), 1-36.
https://doi.org/10.1145/3579639

[7] Shamim, S. I. (2021, August 18). Mitigating security attacks in
kubernetes manifests for security best practices violation.
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering. https://doi.org/10.1145/3468264.3473495

[8] Bose, D. B., Rahman, A., & Shamim, S. I. (2021, June). ‘Under-
reported” Security Defects in Kubernetes Manifests. 2021 IEEE/ACM
2nd International Workshop on Engineering and Cybersecurity of
Critical Systems (EnCyCriS).
https://doi.org/10.1109/encycris52570.2021.00009

[9] Islam Shamim, M. S., Ahamed Bhuiyan, F., & Rahman, A. (2020,
September). XI Commandments of Kubernetes Security: A
Systematization of Knowledge Related to Kubernetes Security
Practices. 2020 IEEE Secure Development (SecDev).
https://doi.org/10.1109/secdev45635.2020.00025

[10]Sojan, A., Rajan, R., & Kuvaja, P. (2021, November). Monitoring
solution for cloud-native DevSecOps. 2021 IEEE 6th International
Conference on Smart Cloud (SmartCloud).
https://doi.org/10.1109/smartcloud52277.2021.00029

[11]Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2019, July 1). Trusted
Container Extensions for Container-based Confidential Computing,
Cryptography and Security,
https://doi.org/10.48550/arXiv.2205.05747

[12]Lin, Y., Tunde-Onadele, O., & Gu, X. (2020, December 7). CDL:
Classified Distributed Learning for Detecting Security Attacks in
Containerized Applications. Annual Computer Security Applications
Conference. https://doi.org/10.1145/3427228.3427236

73),

18

https://doi.org/10.1109/access.2019.2911732
https://digitalcommons.harrisburgu.edu/csms_dandt/3/
https://doi.org/10.1109/smartcloud52277.2021.00029
https://doi.org/10.48550/arXiv.2205.05747

