
Crime Prediction and Forecasting using Machine 

Learning Algorithms 
Azwad Tamir#1, Eric Watson#, Brandon Willett#, Qutaiba Hasan#, Jiann-Shiun Yuan#2 

#Department of ECE, University of Central Florida 

4000 Central Florida Blvd, Orlando, FL 32816, USA 

a.tamir@Knights.ucf.edu 

Jiann-Shiun.Yuan@ucf.edu 

 
Abstract— This research will focus on machine learning 

algorithms for crime forecasting. In the modern world, crime is 

becoming a major and complex problem. In this research, we 

discover the best course of action for teaching a model to forecast 

crime in major metropolitan cities. The purpose of this study is 

to provide the Police Department with proper crime forecasting 

so they can better delegate their resources in response to future 

crime hotspots. We applied several machine learning models to 

predict the severity of a reported crime based on whether the 

crime would lead to an arrest or not. We also did a deep dive into 

the city districts and studied the crime trends by year. We used 

Folium to do data visualization for the study of these trends. We 

discovered trends in the number of crimes and the arrest rate 

from year to year. The different machine learning models that 

we developed are the Random Forest, K-Nearest-Neighbours, 

AdaBoost, and Neural Network. We tested our models on the 

Chicago Police Department's CLEAR (Citizen Law Enforcement 

Analysis and Reporting) system, which has more than 6,000,000 

records. Among all four models, the Neural Network has the best 

outcome with an accuracy of 90.77%. This study also provides an 

insight into the applicability of different machine learning 

models in analyzing crime report datasets from large 

metropolitan cities. 

 
Keywords— AdaBoost, crime forecasting, deep neural network, 
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I. INTRODUCTION 

Aggressive urbanization is causing a rapid increase in the 

size and population of large cities across the world. This 

massive population growth in cities is causing total crimes to 

rise sharply, making it difficult for the police department to 

keep up with it. It is not possible for the police department to 

station police officers in every street corner, so they need 

some intelligent system that can predict the likelihood of 

crimes occurring in different parts of the city at different times 

of the day. Also, there is a large volume of emergency 911 

calls and crime reports coming at every moment of the day. 

These reports need to be sorted to identify the more imminent 

threats, so the police department could allocate their resources 

accordingly and respond to more alarming situations before 

addressing the rest. 

These difficulties stimulated a lot of research work in 

recent times related to predicting future crimes to help the 

police department allocate their resources. S. Kim et al. 

proposed different machine learning methods to predict 

crimes in Vancouver from crime data in the last 15 years and 

obtained an accuracy of 39% and 44% for the K-nearest-

neighbour and boosted decision tree algorithms, respectively 

[1]. Y. Lin et al. investigated a deep machine learning model 

based on the broken windows and spatial analysis to predict 

future crime hotspot locations in Taiwan [2]. P. Kumari et al. 

applied Extra Tree Classifier, K-Neighbours, Support Vector 

Machines, Decision Tree Classifier, and Neural Network 

algorithms to predict the probability of different types of 

crimes in different locations and time around the city [3]. N. 

Hooda et al. used data obtained from different government 

websites to predict future crime rates at different city areas 

using the Folium API [4]. W. Gorr et al. analysed crime data 

to influence and adjust policies and rules to better adapt for 

the future [5]. E. Ahishakiye et al. came up with a machine 

learning model using decision trees to categorize crimes based 

on the crimes’ text description [7]. H. Nguyen et al. build an 

automatic machine learning based classifier that predicts the 

severity of a traffic accident based on the incident records [8]. 

J. Cohen et al. proposed a model for crime forecasting to help 

with the allocation of police resources [9]. Lastly, A. Wheeler 

et al. used Random Forest to build a long-term crime predictor 

of different locations in the city of Dallas. 

The objective of our work is to predict the severity of the 

crime based on the incident reports. We choose whether an 

arrest was made as the indicator representing the crime 

severity. We used a dataset of crime reports for the city of 

Chicago from the year 2001 to 2018, which was made 

available through the Kaggle website [13]. The data came 

from the Chicago Police Department's CLEAR (Citizen Law 

Enforcement Analysis and Reporting) system and consisted of 

more than 6 million records or data points. Each of the data 

point has 23 features that represented various information 

about the nature, location, time, description, and severity of 

the reported crime. We generated four different machine 

learning models, namely Random forest, K-nearest-

neighbours (KNN), Adaptive Boost (AdaBoost), and artificial 

neural network (NN) to predict whether an arrest was made 

based on the information available in the other features of the 

dataset. Moreover, we generated detailed analyses relating to 

the crimes’ location and trends and visualized them in 

interactive maps using the Folium API.  

The paper is organized into four subsequent sections. 

Section II contains all the data pre-processing and feature 

engineering steps taken to clean up the data and prepare it for 
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implementation. Section III consists of the details of the 

model architecture and properties and parameters used to 

construct the classifiers. Section IV incorporates the details of 

the analysis done on the data and the techniques used to 

visualize the trends and crime patterns. Section V reports the 

results of the various models and demonstrates the 

visualizations. Finally, Section VI concludes the work and 

points out potential future research directions. 

II. DATA PRE-PROCESSING & FEATURE SELECTION 

A series of pre-processing steps were implemented on the 

dataset to clean it up and make it ready before inserting them 

into the machine learning classifiers. The detailed analysis of 

the preprocessing steps taken for each of the features is 

provided below: 

ID/Case Number: Both the ID and Case Number features 

are unique identifiers used to tag each incident or datapoint. It 

had unique values for each of the data points and hence did 

not contain any information. These features, however, were 

used to remove duplicate data from the dataset. After this, 

they were not considered and entirely dropped from the 

dataset. 

Block: This represents the block address of the reported 

crimes. There were two parts to this feature. The first was a 

set of numbers that denotes the house number of the report 

location. The second part consisted of the name of the street of 

the reported location. There were several types of 

inconsistencies in this feature that were first removed. Some 

of these inconsistencies include typos, different terminologies 

used for missing datasets, and formatting errors. There were a 

few missing values for which the entire row was discarded. 

There were too few of them to cause any significant decrease 

in the number of datapoints. The next modification was to 

separate the number and street name into two different 

features. This was done in order to make it easier for the 

training models to learn the dataset. Finally, the street names 

were encoded into integers for the convenience of storing the 

values and loading them into the machine learning models. 

Description: This contains the description of a crime in a 

concise manner. There were 353 unique description values in 

the dataset. As a result, it consists of categorical information 

about the nature of the reported crime. The description texts 

were encoded into integers to help with the storage and 

loading process. The feature data were also checked for 

missing values, typos, inconsistencies, and outliers, but none 

were found. 

IUCR and FBI code: IUCR stands for Illinois Uniform 

Crime Reporting, and this was used as a code denoting the 

type of crimes reported. The FBI code also contains similar 

information about the nature of the crime. These two features 

contain information that is very similar to the description 

feature, and there also exists a very high correlation among 

them. Hence, these features were dropped as this information 

is already being feed to the machine learning models through 

the description column. 

Arrest: This is a binary categorical data that has either true 

or false values. True means that an arrest was made for the 

reported crime while false refers that no one was arrested for 

that crime. This represents the severity of the crime and could 

be used to deduce whether imminent police involvement is 

required or not. The police department could use this 

information to control the allocation of resources and assign 

police officers accordingly. So, this was used as the prediction 

labels of the machine learning models. The data was also 

encoded into binary values for ease of handling. 

Domestic: This also consists of binary values and denotes 

whether the crime occurred in a domestic or public 

environment. Domestic crimes are usually more non-violent 

and include domestic disturbance and other related issues. The 

data was first encoded into integers and checked for 

inconsistencies and missing values. Fortunately, there was no 

problem with the data and required no further processing. 

District, Ward, and Community Area: These are three 

different measures used to divide up the total area under a city. 

They contained the location information of the crime report. 

However, all of them had a large amount of missing data 

points and there exits other location features like the 

coordinates and Block which contained very little missing 

values and the same information. Hence, all these features 

were excluded from the training process. 

Beat: This represents the smallest police geographical 

segmentation area, which they use to allocate resources. This 

feature was already in the form of integers and contained no 

missing values, inconsistencies, and outliers. As a result, no 

further processing was required. 

Latitude and Longitude: These contained the exact 

location of the crime’s reporting location in the form of 

continuous variables. About 1 percent of the data was missing. 

The entire row containing the missing values were excluded 

from the dataset. The data also contained some inconsistencies 

and outliers. These were dropped as well. 

X and Y coordinate: Contains the same information as the 

latitude and longitude values in a different format. Hence, 

they contained no additional information and were therefore 

dropped. 

Updated on: This represents when the report was included 

in the police server. They show a high correlation to the data 

and time features of the dataset and hence were dropped. 

Location: Composite of the latitude and longitude columns, 

they contained the same information as the latitude and 

longitude features and were therefore not included. 

Location Description: This is a categorical data that 

describes the location of where the crime was committed. 

There are over 170 unique values, which were encoded into 

integers to make storing the values easier and loading them 

into the machine learning model. Over 1,968 null values were 

found for this feature, which were dropped from the dataset. 

Primary Type: This is a categorical data that describes the 

type of crime that was committed. There were over 35 unique 

values of this data, which were encoded into integers for 

making it more convenient to store values and load them into 

the machine learning model. Some unique values also had 

lower value counts than others, so values with a count less 
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than 1,000 were removed from the dataset, leaving only 25 

unique values for this data. 

Date: This data contains the time at which the crime 

incident was reported. This feature was used as an index when 

pre-processing the dataset and was dropped after it was not 

needed. 

Year: This feature contains the year at which the crime was 

reported. The unique values are the years of 2001 to 2017. 

When analyzing the data, shown in the heatmap in Fig. 1, the 

year 2017 only contained crimes committed in January. Data 

containing the year of 2017 was dropped entirely from the 

dataset. This value was also encoded for the dataset, such as 

the value of 0 representing 2001. 

Month: This feature contains the month at which the crime 

was reported. The date feature of the crime reported was used 

to generate it. This feature was also encoded after it was 

created to make it easier to store and load them into the 

machine learning model. 

Weekday: This feature contains the weekday on which the 

crime was reported. Like the month feature, the date feature of 

the crime report was used to generate this feature. 

After adjusting all the above individual feature pre-

processing, there were in total 14 features chosen for training 

the classification machine learning models to predict the arrest 

status. 

III. MODELS 

Several different machine learning models were applied to 

the dataset. The detailed architecture of the models and their 

parameters are discussed in this section. 

A. Random Forest 

The random forest classifier was the first machine learning 

model applied on the Chicago Police dataset to predict arrests. 

The Scikit-learn machine learning library [11] was used to 

implement the random forest classifier on the pre-processed 

dataset. For initial training and evaluation, the random forest’s 

default parameters were used, which included 100 decision 

trees. Gini was used as the impurity measurement; minimum 

samples to split an internal node was set to 2; minimum 

samples per leaf were set to 1; and bootstrap sampling was set 

to true. Five-fold cross-validation was used to train and 

evaluate the random forest model, which gave the average 

output scores shown in Table 5. 

In order to improve the overall scores of the random forest 

classifier, the random search and grid search functions from 

the Scikit-learn library were used to improve the model for 

arrest prediction. Before using the random search function, 

10% of the Chicago Police dataset was uniformly sampled for 

training and evaluation, which was used to help reduce 

training time. The random search function utilized five-fold 

cross-validation for evaluating the model, which also took a 

set of parameters chosen for the random forest model, shown 

in Table 1. The random search was set with a max of 100 

iterations, where each iteration took random parameters to 

train and evaluate from the set. After the random search was 

performed, the parameters from the best model were chosen, 

which was used to perform a grid search using the following 

parameters shown in Table 2. Compared to the random search, 

the grid search accounts for all parameter combinations. After 

performing a grid search, the best number of estimators was 

550, and the best max depth of each tree was 20. Next, 75% of 

the Chicago Police dataset was uniformly sampled for training, 

 
Fig. 1  Heatmap showing the number of crimes committed per month for all years 

 

 

TABLE I 

RANDOM SEARCH PARAMETERS FOR RANDOM FOREST MODEL 

Parameter Parameter Values 

Number of Estimators 
[100, 200, 300, 400, 500, 
600, 700, 800, 900, 1000] 

Max Depth of the Tree 
[10, 20, 30, 40, 50, 60, 70, 
80, 90, 100] 

Minimum Samples to Split an 
Internal Node 

[2, 4, 8] 

Minimum Samples Required at a 
Leaf Node 

[1, 2, 4] 

Max Features when Considering a 
Best Split 

[‘sqrt’, ‘log2’] 

Bootstrap Samples when Building 
a Tree 

[True, False] 
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while the remaining 25% were used for the test set. Compared 

to the scores using the default parameters, the accuracy 

increased around 3.98%, precision improved around 11.88%, 

recall increased around 2.46%, and the f1 score increased 

around 6.66%. The performance results of the tuned random 

forest model are shown in Table 5. 

B. K-Nearest Neighbours 

The k-nearest neighbors classifier was the second machine 

learning model used on the Chicago Police dataset to predict 

arrests. Like the random forest classifier, the Scikit-learn 

library was used to implement the k-NN classifier on the 

dataset. For initial training and evaluation, the default 

parameters of the k-NN classifier were used, with a K value 

equal to 5 and the distance measurement being set as 

Euclidean. The Five-fold cross-validation was used to train 

and evaluate the k-NN model, which gave the average output 

scores shown in Table 5. 

In order to improve the k-NN model, the random search 

function from Scikit-learn was used to find the best 

parameters for the model, where the parameters chosen are 

shown in Table 3. Like the random forest model, 10% of the 

dataset was uniformly sampled for training/evaluating the 

model, where 100 iterations were used for the random search 

along with the five-fold cross-validation. The best model gave 

the following parameters: k = 11, weights = ‘distance’, 

algorithm = ‘ball_tree’, leaf_size = 20, and p = 1. A grid 

search was not further needed for this model, so the 

parameters from the best model in the random search were 

used for training and evaluating the model. Like the random 

forest model, 75% of the dataset was uniformly sampled, and 

the remaining was used for the test set. The performance of 

the tuned k-NN model is shown in Table 5. The k-NN 

accuracy increased around 0.94%, precision increased around 

4.07%, recall decreased around 0.49%, and f1 score increased 

around 0.41%. Overall, compared to the random forest model, 

the k-NN model did not show significant improvement apart 

from a slight increase in precision. 

C. AdaBoost 

The adaptive boost classifier was the third machine 

learning model used on the Chicago Police dataset to predict 

arrests. Like the previous two models, the Scikit-learn library 

was used to implement the adaptive boost classifier on the 

dataset. For training and evaluating the classifier, five-fold 

cross-validation was used and the default parameters of the 

AdaBoost model were used. The default parameters include a 

learning rate of 1; 200 weak classifiers; and a max depth of 1 

for each decision tree classifier. The model’s performance 

with the default parameters is shown in Table 5, which was 

shown to be lower in performance than the random forest 

model, which is more likely due to it being more susceptible 

to noise in the data. 

Like the previous two classifiers, the Scikit-learn functions 

were used to help tune the model. Given that the only 

important parameters to tune were the number of estimators 

and the learning rate, a grid search technique was used as 

there were fewer parameter combinations to work with 

compared to the other models. The parameters chosen for the 

estimators were: 400, 500, and 600. Also, learning rates of 1, 

1.2, 1.4, 1.6, 1.8, and 2 were considered. Like the previous 

models, 10% of the dataset was uniformly sampled for 

training and evaluating the model, where five-fold cross- 

validation was used for the grid search. The parameters from 

the best model were a number of estimators equal to 600, and 

a learning rate equal to 1.8. After the best parameters were 

found, 75% of the dataset was uniformly sampled for training 

and the remaining 25% was used for the test set to evaluate 

the model. The performance of the tuned AdaBoost model is 

shown in Table 5. The accuracy of the model increased 

around 2.05%, precision decreased around 0.82%, recall 

increased around 8.55%, and the f1 score increased around 

TABLE III 

GRID SEARCH PARAMETERS FOR RANDOM FOREST MODELS 

Parameter Parameter Values 

Number of Estimators [450, 500, 550] 

Max Depth of the Tree [15, 20, 25] 

Minimum Samples to Split an Internal 
Node 

[2] 

Minimum Samples Required at a Leaf 
Node 

[2] 

Max Features when Considering a 
Best Split 

[‘log2’] 

Bootstrap Samples when Building a 
Tree 

[False] 

 

TABLE III 

RANDOM SEARCH PARAMETERS FOR KNN MODEL 

Parameter Parameter Values 

Number of Neighbors [3, 5, 7, 9, 11, 13] 

Weights (Function used in Prediction) 
[‘uniform’, 
‘distance’] 

Algorithm (Used for nearest neighbors 
computation) 

[‘ball_tree’, 
‘kd_tree’] 

Leaf Size (Used for BallTree or KDTree) [20, 30, 40] 

Power Parameter (Used for Minkowski 
Metric) 

[1, 2] 

 

TABLE IV 

MODEL PROPERTIES AND HYPERPARAMETERS OF NN MODEL 

Parameter Description Value 

Loss Function Cross Entropy Loss 

Optimizer Adam Optimizer 

Test Train Split 
Fivefold cross 
validation 

Output Class 2 

Batch Size 1000 

Learning Rate 0.01 

Number of Training Epochs 500 
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6.31%. Overall, this led to the AdaBoost classifier performing 

best after the random forest classifier, which has the k-NN 

classifier perform below the AdaBoost classifier. 

D. Neural Network 

The last classification machine learning model that we trained 

on the Chicago Police dataset to predict arrest was a neural 

network based classifier. Four different models that varied in 

architecture and number of layers were trained on the dataset, 

and their test accuracies were compared. The first model 

consisted of 4 hidden layers, the second model had 6 hidden 

layers, whereas the third model contained 11, and the fourth 

had 14 hidden layers. The PyTorch machine learning 

programming framework [12] was used to generate all the 

models. The Neural network consisting of 11 hidden layers 

showed the best performance. The basic architecture of this 

network is shown in Fig. 2. 

The input layer consists of 14 features. Then the 

information propagates through 11 hidden layers of varying 

width. The RELU activation function was used in between 

each hidden layer. Other activation functions were also tried 

out, but The RELU showed the best accuracy. The layers 

became wider while going further down towards the middle 

and then was shrank down to 14 nodes and was finally 

converged to 2 neurons as the output was a binary 

classification. The architecture followed a type of double 

wedge shape with a wide middle with a narrow head and a tail. 

A SoftMax layer was used at the end to predict the 

classification label. 

A couple of additional data preprocessing was done to help 

the training of the model and avoid overfitting. The number of 

data points after the initial preprocessing contained 6.08 

million samples where 72% were negative samples and the 

rest 28% were positive. So, the data was moderately skewed 

and confused the network, and made it harder to learn. So, a 

random sampling was done to reduce the data to 2.90 million, 

where a fraction of the negative samples was discarded. This 

made the data more uniform and easier to learn with 52% of 

the new dataset being negative and the rest 48% being positive. 

Finally, a normalization was applied on all the different 

features of the dataset by subtracting each value with the mean 

and dividing it with the standard deviation. 

The properties and hyperparameters of the network are 

shown in table 4. A wide range of different hyperparameter 

values was tried out with a grid search to pick the most 

optimum hyperparameters that produced the best results. The 

Cross-Entropy loss function was used along with an Adam 

optimizer. 20% of the data was set aside for the testing and the 

remaining 80% was used for training the model. A batch size 

of 100 was used while training at a learning rate of 0.01 and 

the model was trained for 100 epochs. The training accuracy 

achieved after 100 epochs was about 92% with a 90.77% test 

accuracy so the model was not overfitted. 

IV. DATA VISUALIZATION 

When analyzing the dataset, the heatmap shown in Fig. 1 

was first used to determine whether crimes were decreasing or 

increasing. It was found to be gradually going down over the 

years. Next, the crimes were analyzed per month to observe 

which months have the highest crime rates, which is shown in 

Fig. 3. The month of July was determined to be where crimes 

peak the highest, while February showed the lowest crime 

rates. Crimes per week were further analyzed, and it was 

Input Layer: 14 Features

Layer1: Number of Nodes: 28, Activation:RELU

Layer2: Number of Nodes: 112, Activation:RELU

Layer3: Number of Nodes: 448, Activation:RELU

Layer4: Number of Nodes: 448, Activation:RELU

Layer5: Number of Nodes: 448, Activation:RELU

Layer6: Number of Nodes: 448, Activation:RELU

Layer7: Number of Nodes: 224, Activation:RELU

Layer8: Number of Nodes: 112, Activation:RELU

Layer9: Number of Nodes: 56, Activation:RELU

Layer10: Number of Nodes: 28, Activation:RELU

Layer11: Number of Nodes: 14, Activation:RELU

Output Layer: Number of nodes: 2
 

Fig. 2 The detailed architecture of the best performing neural network 

model 

 
Fig. 3 Distribution of crimes in different days of the week 

 
Fig. 4 Distribution of crimes in different month of the year 
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determined that Friday has the highest number of crimes, 

while Sunday has the lowest number of crimes. 

Crimes per location were also analyzed after performing 

temporal analysis on the dataset. Viewing crimes based on 

location revealed that the highest number of crimes were 

committed on the street, followed by crimes committed at 

residencies, crimes committed at apartments, and crimes 

committed at sidewalks. Crimes per type were also analyzed, 

where theft had the highest crime count, followed by battery, 

criminal damage, and narcotics. 

After data preprocessing and investigation, we noticed a 

trend with the data based on year. We started plotting out the 

crime locations, and color coded them based on whether there 

was an arrest or not for each year. We noticed an increase in 

arrests in 2004-2005 and then a decrease in arrests made in 

2006 shown in Fig. 4. Please note in Fig. 4, we are comparing 

2005 and 2006 as this shows the largest change in crime rates 

in two consecutive years. In Fig. 5, we visualized the Arrest 

rates per district and the number of incidences per district. 

This would help point out the districts that need more 

workforce as there is an obvious lack of resources in these 

districts needed to keep up with the crime. Please note in Fig. 

5, we are comparing the entire data on a district level. We 

compare the arrest rates with the number of incidents to see if 

there is a correlation. What we discovered was that some 

districts with a high arrest rate were due to the low number of 

incidents, while the districts with the higher number of 

incidents have a lower arrest rate. Note that there were two 

districts with a high number of incidents which also have a 

decent arrest rate. The data visualized in Fig. 5 will help focus 

down the areas that need to be patrolled more frequently and 

need more assistance or funding. All visualizations in this 

section were made using the Folium API. 

V. RESULTS 

The arrest status was predicted using the preprocessed 

dataset generated in Section II with the machine learning 

models described in Section III. Initially, the default 

parameter values of the Scikit-learn library were used to 

generate the accuracy parameters. Later, extensive model 

parameter tuning described in Section III was implemented to 

increase the models’ performance by significant amounts. The 

corresponding values for the performance metrics of the 

Random Forest, k-nearest-neighbors, and AdaBoost machine 

learning algorithms before and after parameter tuning are 

shown in Table 5. The comparison between the pretuned and 

tuned accuracies and F1 scores is given in Fig. 6, while that 

between precision and recall is given in Fig. 7. 

The results showed an increase in all three models’ overall 

accuracy after tuning compared to their pre-tuned counterparts 

with the most significant increase for the Random forest 

classifier. However, the accuracy of k-NN did not improve 

much during the tuning process. A large increase in precision 

TABLE V 

PERFORMANCE OF MODELS WITH DEFAULT AND TUNED PARAMETERS 

 Models Average Accuracy Average Precision Average Recall Average F1 Score 

Pre-tuned 
models with 

default 
parameters 

Random Forest 84.878% 80.276% 63.826% 70.446% 

k-NN (k = 5) 84.071% 78.756% 59.974% 68.094% 

AdaBoost 85.859% 91.105% 55.791% 68.824% 

Model with 
tuned 

parameters 

Random Forest 88.861% 92.156% 66.283% 77.107% 

k-NN (k = 5) 85.008% 82.825% 59.482% 69.239% 

AdaBoost 87.914% 90.281% 64.344% 75.137% 

 

 
Fig. 5 Comparing 2005 and 2006 locational data based on arrests. Red 

dots represent crime reports and blue dot represents an arrest was made 

based on the report. 

 

 
Fig. 6 Comparing the total of arrest rates per district to the total number 

of incidents per district. Note that the two places with the lowest number 

of incidents also have the highest arrest rate. 
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was seen for the Random Forest classifier after tuning, with a 

significant increase for the k-NN algorithm as well. However, 

the precision value of the AdaBoost algorithm had in fact 

decreased after the tuning process. On the other hand, 

AdaBoost had a considerable enhancement in the recall value, 

while that of Random Forest and k-NN did not change much 

due to the parameter tuning. Finally, a significant increase in 

the F1 score was seen for the Random forest and the 

AdaBoost algorithm with very little change in that of k-NN 

after the tuning process. Overall, the Random forest and the 

AdaBoost showed better performance in terms of the Average 

accuracy and the F1 score among the three conventional 

machine learning models. 

Finally, four different Neural Network (NN) models with 

varying architecture were trained on the dataset to predict the 

police report’s arrest status. The hyperparameters of all four 

neural network architectures trained on the dataset were 

extensively tuned, and their accuracy parameters were 

compared to figure out the best model. The results obtained 

for the different neural network models are given in Table 6. 

The test accuracy and other performance metrics of the neural 

network model before and after hyperparameter tuning are 

shown in Table 7. A Significant boost in the performance of 

the model was observed after tuning the hyperparameters. The 

final test accuracy came up to be 90.77%, which is greater 

than all the other models that we trained. The Precision, 

Recall, and F1 score of the neural network is also more 

impressive compared to the other models. 

The comparison between the tuned and final versions of 

all four machine learning models, namely the Random forest, 

k-NN, AdaBoost, and neural network are given in Fig. 8. It 

shows the Neural Network has better performance than the 

other models in all the different performance metrics. This is 

especially prominent in the Precision, Recall and F1 scores of 

the different models. 

VI. CONCLUSION 

In this work, we applied K-Nearest Neighbors, AdaBoost, 

Random Forest, and Neural Network algorithms to form 

models to forecast future crimes and locations of crimes. Also, 

we visualized the data using the Folium API for our data 

breakdown. The neural network based machine learning 

TABLE VI 

PERFORMANCE OF DIFFERENT NEURAL NETWORK MODELS 

Number 
of Layers 

Test 
Accuracy (%) 

Precision Recall 
F-1 

Score 
4 89.97 0.955 0.828 0.887 
6 90.43 0.959 0.835 0.893 

11 90.77 0.962 0.837 0.895 
14 90.31 0.958 0.833 0.891 

 
TABLE VII 

PERFORMANCE OF NN MODELS AFTER PARAMETER TUNING 

Performance 
Metric 

Results obtained 
before 

hyperparameter 
tuning 

Results obtained 
after 

hyperparameter 
tuning 

Accuracy 84.971% 90.771% 

Precision 89.416% 96.198% 

Recall 72.729% 83.706% 

F1 Score 80.214% 89.518% 

 

Fig. 7 Comparison between pretuned and tuned accuracies and F1 Scores 

between the different conventional ML models. 

Fig. 8 Comparison between pretuned and tuned precision and recall 

between the different conventional ML models. 

Fig. 9 Comparison between the performance metrics of all four ML 

Models 
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model performed the best among the different algorithms 

achieving an impressive accuracy of 90.77%. It also showed 

better performance in terms of precision, recall and F-1 scores 

compared to the other machine learning models. We also 

implemented several different neural network models with 

varying architectures and number of layers to determine the 

best structure for this kind of dataset. This work would help 

the police department of large metropolitan cities determine 

which police calls need imminent attention and manage their 

resources accordingly. It would also help them plan which 

areas of the city would require more police involvement in the 

future. 
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