
The Factors of Quality Assurance in Agile
Environment

Ayesha Saad
1
, Manish Madhav Tripathi

2
, Preetam Suman

3

2, 3
Dept. of CSE, Integral University, Lucknow, India

Abstract- Agile is one of the most popular methodologies to

produce software these days. They aim to produce

software wherein specifications are constantly altering and

seek to make development easy whilst ensuring quality.

The several agile techniques just like XP, Scrum and many

others use best ways that help to improve Quality. Thus

ensuring Software package Quality Assurance (SQA)

inside product delivered. In this particular paper Quality

techniques of Agile may be focused upon. The analysis

from the different techniques may be carried out in basis

of crucial features, quality variables achieved, timing, in

addition to cost.

Keywords: Agile, Agile methodologies, Software quality,

Quality Assurance

I. INTRODUCTION

While there is a constant modifying environment inside the

software business it is usually impacting the software program

development course of action which calls for the procedures

to face expected alterations through it's lifetime never-ending

cycle [1]. Agile systems hence are available as a rescue mainly

because it offers up development systems which have been

adaptive and also encourages fast and also versatile response

to alterations in requirements. Abbrahamson describes about

how exactly to recognize which a development methodology

can be an agile one [6]:

 Incremental: Small software releases with rapid
cycles.

 Cooperative: Customer and developer working
constantly together with close communication.

 Straightforward: The method is easy to learn,
modify and document.

 Adaptive: It is easy to make last minute changes.
Good quality Assurance in agile is a matter of concern as

well as a deciding factor of delivering an item that is
acceptable towards the customer. A traditional Good
quality Assurance technique relies upon heavy weight
assessment methods whereas Agile Good quality Assurance
techniques are built-in daily activities by teams. The actual
paper collects high quality assurance practices in agile
together along with analyzes them. Software quality is the
measure or stage to which a head unit, or process meets
what's needed that are specified because of the customer
and fulfils the particular expectations of buyer. Quality
Assurance is a collection of planned actions accomplished

in a systematic way to provide confidence the software
development process confirms with all the requirements. The
main objective of the research is to accumulate the various high
quality assurance practices connected with agile and analyze
these phones gain a deeper comprehension of the level along with
state of high quality assurance in agile along with how this
methodology aims to attain good quality software. This paper
analyses quite features of every single agile practice of which
helps in reaching.

This particular paper is structured in the following manner.
First, a short description of agile good quality and agile good
quality assurance is talked about. In the next section the many
quality assurance methods followed in Agile is briefed upon.
Next, the practices as well as the existing researches are usually
analysed. The last along with final section wraps up the paper
along with the future work.

II. AGILE QUALITY AND AGILE QUALITY ASSURANCE

Pressman [2] defines quality as “conformance to explicitly
stated functional requirements, explicitly defined development
standards, and implicit characteristics that are expected of all
professionally developed software”. Sommerville [3] defines
software quality as a management process concerned with
ensuring that software has lesser defects and that it reaches the
required benchmark of maintainability, reliability, portability and
so on.

A. Agile Quality

Ambler [4] considers agile quality to be a result of practices such
as effective collaborative work, iterative and incremental
development as implemented through techniques.

B. Quality assurance (QA)

It is a way of preventing mistakes or defects in products and
avoiding problems when delivering solutions or services to
customers; which ISO 9000 defines as "part of quality
management focused on providing confidence that quality
requirements will be fulfilled".

C. Agile Quality Assurance

 It is the development of software that can respond to change, as
the customer requires it to change [5]. Thus providing tested,
working, and user approved software at the end of each iteration.
The various aspects of agile quality have shifted the focus from

ACEIT Conference Proceeding 2016

IJCSIT-S251

mailto:ayeshasaad75@gmail.com
mailto:mmt@iul.ac.in
https://en.wikipedia.org/wiki/ISO_9000
https://en.wikipedia.org/wiki/Quality_management
https://en.wikipedia.org/wiki/Quality_management

heavy documentation that was the requirement for quality in
traditional processes.

III. QUALITY ASSURANCE PRACTICES IN AGILE

A. On-Site Customer

On-site customer is usually an exercise where you or his
representative should be present and intended for the
development team whole-time. The client has to know his
requirements through the system and the actual developers
should question you concerning requirements after they are
uncertain as to what the system ought to be doing. A real
customer may be the one who will really operate the system
only when it's in production [1]. Effective communication
and feedbacks are necessary. An increased reliance upon
less informative communication channels end in higher
defect charges [6]. User guidance is through preparing
games, user testimonies, story cards along with acceptance
tests. This technique helps ensure that users have the ability
to carry their work on their own satisfaction in a effective,
efficient along with economical manner. Tests confirmed
that On-site purchaser practice has substantive optimistic
influence on quality of transmission and speed involving
software production [7].

B. System Metaphor

The system Metaphor is a method of explaining the logical
architecture of a system, it could be the means of
communicating about the project in terminology that both
designers and customers can understand, and which does
not require pre-existing familiarity with the problem site [8,
9]. System metaphor helps the consumer to communicate
while using developers using the shared vocabulary in
terms recognized by both developers and also customer.
System metaphor raises the interaction between buyers and
developers, which is a key point in XP, an agile practice for
that success of version. According to [1] through metaphor
you'll be able to get an architecture that may be easy to
connect and elaborate. Garzaniti R., Haungs J.,
Hendrickson [10] in their case study regarding payroll
project identified activities that teams can use to develop
metaphors with regards to systems, and processes for
evaluating system metaphors. They provided an effective,
structural model regarding system metaphors, based upon
Peircean semiotics, giving a simple account of just how
metaphors can promote a software process. They said that
the team had a major benefit of a very loaded domain
model developed by members of the team within the
project's first version. It gave the members with the project
an advantage in understanding an extremely complex
domain.

C. Joint Application Development

Combined application development (JAD) group meetings
are planned in addition to controlled sessions that assemble
cross functional people to be able to bring out high-quality
deliverables in much very less time of time (High smith,
2000). JAD sessions are an aid to produce many
deliverables as well as requirements and prototypes. These

sessions last typically for any day or less and might be repeated
prior to the goals have also been achieved. JAD sessions really
are a cost efficient and rapid technique to develop requirements
(Carmel et 's., 1992). JAD sessions reduce the defects induced
while collecting requirements and as well design defects. Joint
application development (JAD) is a facilitated group technique
which they can use in systems demands determination (SRD).
JAD can be utilized with other ways to increase their
effectiveness. Evan V. Duggan in addition to Cherian S.
Thachenkary in their study integrated JAD in addition to nominal
group process (NGT), a well accepted technique that was used to
reduce the effects of adverse group dynamics on task-oriented
objectives. They examined this specific integrated structure
within a lab experiment to ascertain if it could ease the down
sides that JAD features faced during SRD. The outcomes
suggested that this integrated approach outperformed JAD in their
test environment; it was as efficient as JAD alone and yes it
appeared to raise the decrease from the need for wonderful
facilitation skills throughout group decision-making.

D. Refactoring

Refactoring as defined by Fowler[11] is a change made to the
internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behaviour.
There are significant advantages that refactoring provide[11]:

 Refactoring helps developers to program faster

 Refactoring improves the design of the software

 Refactoring makes software easier to understand

 Refactoring helps developers to find bugs
The first advantage aims towards productivity. The last three
advantages of refactoring relates to software quality attributes. In
their case study R. Moser, P. Abrahamsson, W. Pedrycz, A.
Sillitti, G. Succi [12] concluded that refactoring had effects on
quality of the code, particularly on software maintainability, and
development productivity. Their case study provided evidence
that refactoring increases development productivity and improves
quality factors, reduces code complexity and coupling and
increases cohesion. T. Mens, S. Demeyer, B.D. Bois, H. Stenten,
P. van Gorp [13] focused on different types of refactorings. They
point out that some refactorings eliminate code redundancy, some
increase the level of abstraction, some improve the reusability of
the product, and some have a negative effect on the performance.

E. Pair Programming

Pair programming is an exercise where the code is written by two
individuals at a single system. Every person has his individual
role to participate in. Where one head concentrates on current
method and its implementation while creating the code the other
person has a additional strategic work regarding examining that
perhaps the current approach will work or not as well as finding
other methods of the problem. Cockburn The., Williams L. [14]
conducted an experiment to determine the efficiency of pair
programming in comparison with programming by just one
programmer it has been observed that 15% more hours on the
program was spent as compared to with individual. Costs tend not
to increase and ensuing code has with regards to 15% fewer
disorders. It was also concluded that the increase throughout
development costs with regards to 15% with pair programming

ACEIT Conference Proceeding 2016

IJCSIT-S252

was recovered from the reduction of disorders. Lui and
Chan [15] deducted of 5% moment savings gained by way
of pair programming. Müller [16] discovered that pair

programming reduced some time spent on the standard

assurance phase of the project nearly simply by half.

F. Test Driven Development

Most of these tests are published before writing the source
code and working after its rendering, thus they are executed
during the entire development of the program. Developer
performs this sort of unit tests to construct their confidence
in code when compared with acceptance testing performed
because of the customer for his satisfaction inside the
system. S. Yenduri, L. A. Perkins [17] performed an
experience two groups associated with students, one
developing computer software and testing it inside the
conventional way after implementation and the other group
through Test Driven Improvement. It was figured the total
volume of faults in device, integration and acceptance
testing was smaller in TDD when compared with the
traditional strategy. The number associated with faults
detected because of the Quality Assurance party in TDD
was not even half of that from the traditional approach.
TDD brings better results while quality and output are of
issue, which can be due to the way test cases are designed
as the computer software is developed. Maximilien and
Williams[18] used Test driven improvement at IBM with a
project of 71KLOC associated with non-test code and also
found that use of Test Driven Improvement reduced the

defect rate by about 50% in comparison to a similar system that's
built using an adhoc unit examining.

G. Automated Acceptance Testing

Acceptance Jeff Canna[19] describes acceptance testing by
comparing the coverage it provides to the one provided by unit
tests as “Perfectly written unit tests may give you all the code
coverage you need, but they don’t give you (necessarily) all the
system coverage you need. The functional tests will expose
problems that your unit tests are missing”. Acceptance tests are
written by the customers to verify that the system’s functionality
is in accordance to the requirements and expectations from the
system. Automated testing is preferred is the process of executing
automated acceptance tests rather than executing them manually.
Any program feature without automated tests simply doesn’t exist
[1]. Automated acceptance tests must be ready by the middle of
iterations and should run daily.

IV. ASSESSMENT OF QUALITY ASSURANCE TECHNIQUES IN

AGILE

Given in Table at the top of the page

V .CONCLUSION

Agile follows the most beneficial practices to achieve quality
inside the software. It is designed on achieving item quality with
techniques, like Test Influenced Development, Automated
Popularity tests, Continuous Integration. Quality is assured since
it rapidly responds to changes in prerequisites and assures that
will client’s needs are met as the client is present full time at the
improvement site. As the complete development proceeds with

Practices Important Features Empirical Evidence

On-Site
Customer

Real, full-time user to answer queries Experiments were carried out which confirm that On-site customer
practice has substantial optimistic influence on quality of
communication and speed of software production [7].

System
Metaphor

Means of communication between
developer and user.

Garzaniti R., Haungs J., Hendrickson [10] carried out experiments
and said that the team had the benefit of a very rich domain model
developed by members of the team in the project's first iteration. It
gave the members of the project an edge in understanding an
extremely complex domain

Joint
Application
Development

JAD sessions are structured, facilitated
workshops that bring together cross
functional people in order to produce
high-quality deliverables in a short
period of time [28].

Studies have shown that JAD sessions are a cost effective and fast
technique to develop requirements [20].

Refactoring Modifying the source code without
changing its external behaviour.

Case study by R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G.
Succi [12] concludes that refactoring increases development
productivity and improves quality factors, reduces code complexity
and coupling and increases cohesion.

Pair
Programming

Code written by two people at a single
system

Cockburn A., Williams L. [14] conducted an experiment to conclude
that with pair programming costs do not increase and resulting code

has about 15% fewer defects

Test Driven
Development

Unit tests written before writing the
source code and executing after its
implementation

Maximilien and Williams[18] accessed Test driven development at
IBM and found that the application of Test Driven Development
reduced the defect rate by about 50% compared to a similar system
that was built using an adhoc unit testing.

Automated
Acceptance
Testing

Automated tests defined by user to
verify system’s functionality.

Any program feature without automated tests simply doesn’t exist
[1].

ACEIT Conference Proceeding 2016

IJCSIT-S253

small iterations having regular unit assessments and
feedback by client, Agile fully addresses the needs of user.
Test Driven Development makes the software program
more acceptable to changes. JAD offers cross functional
people to produce high-quality deliverables in the lesser
span of their time. This paper aims to pay up the quality
factors which might be achieved of software package built
using Agile. It can be quite evident on the data reviewed
that will Agile achieves requirement and design High
quality Assurance using Technique Metaphor, JAD as well
as On-Site customer as well as development quality
warranty using pair coding, refactoring, acceptance
assessments and unit assessments. These techniques
although achieving sufficient quality benefits also make an
effort to improve cost and amount of time in finding bugs
as well as removing them.

V. FUTURE WORK

The core of Quality Assurance is that if in an
organization the process to develop the products are good
and are followed strictly and carefully, then the products
are bound to be of good quality. The contemporary quality
assurance concept includes direction for recognizing,
defining, analyzing, and improving the production process.
Agile includes best practices that helps improving the
process of developing a product but how closely these
practices are followed and to which extent is the point that
needs to be investigated. The drawbacks and the assets of
each practice must be acknowledged and how these
practices support each other to achieve process assurance
must be focused upon by the participants.

REFERENCES

[1] Beck K., "Extreme Programming Explained: Embrace
Change",Addison-Wesley, 1999.

[2] Pressman, R.S., Software Engineering a Practitioner’s Approach,
Mcgraw-Hill, 2001

[3] Sommerville,I., Software Engineering. Addison-Wesley, 2004

[4] Ambler, Quality in an agile world. AmbySoft, Inc., 2005

[5] Pete McBreen. Mcbreen, Quality Assurance and Testing in Agile
Projects, Consulting 2003.

[6] Abrahamsson, P., Ronkainen, J., Siponen, M., Warsta, J., "New
Directions on Agile Methods: A Comparative Analysis", 25th
International Conference on Software Engineering, 2003.

[7] Adam W., Maciej W., Wojciech C., Experimental Evaluation of
’On-Site Customer’ XP Practice on Quality of Software and Team
Effectiveness, OTM'10 Proceedings of the 2010 international
conference on “On the move to meaningful internet systems”,
Volume 6428, pp 269-278

[8] Beck, K.: The Metaphor Metaphor. Invited presentation at
OOPSLA (2002)

[9] Beck, K., Cockburn, A., Bossavit, L.: System Metaphor.
http://c2.com/cgi/wiki?SystemMetaphor (2003)

[10] Garzaniti, R., Haungs, J., Hendrickson, “Everything I Need to
Know I Learned from the Chrysler Payroll Project”, SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ACM Press,1997

[11] M. Fowler, Refactoring Improving the Design of Existing Code,
Addison-Wesley, 2000

[12] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi “A
case study on the impact of refactoring on quality and

productivity”, Balancing Agility and Formalism in Software Engineering,
Volume 5082, pp 252-266, 2008

[13] T. Mens, S. Demeyer, B.D. Bois, H. Stenten, P. van Gorp,“Refactoring:

Current Research and Future Trends.”, Electronic Notes in Theoretical

Computer Science, 82(3), 2003.

[14] Cockburn A., Williams L., “Costs and Benefits of Pair Programming”,
in Extreme Programming Examined. Addison-Wesley, 2001

[15] K. M. Lui and K. C. C. Chan, “When Does a Pair Outperform Two
Individuals?” XP2003, Italy, 2003

[16] M. M. Müller, “Are Reviews an Alternative to Pair Programming?” 7th
International Conference on Empirical Assessment in Software

Engineering, UK, 2003.

[17] S.Yenduri, L.A. Perkins, “Impact of Using Test-Driven Development”,
International Conference on Software Engineering Research and Practice
& Conference on Programming Languages and Compilers, SERP 2006.

[18] Maximilien E.M., WilliamsL., “Assessing test-driven development
at IBM”, 25th International Conference on Software Engineering, 2003.

[19] Canna, J. Testing Fun? Really?, IBM developerWorks Java Zone
(2001).

[20] Carmel, E., George, J.F., Nunamaker, J.F., Jr., "Supporting joint

application development (JAD) and electronic meeting systems: moving
the CASE concept into new areas of software development", Proceedings
of the Twenty- Fifth Hawaii International Conference on System Sciences,
1992, Volume: iii,7-10 Jan. 1992, pp. 331 -342 vol. 3.

ACEIT Conference Proceeding 2016

IJCSIT-S254

http://link.springer.com/book/10.1007/978-3-540-85279-7
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1201238&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1201238
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1201238&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1201238
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8548

